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LETTER TO THE EDITOR 

Generalised symmetries of Fokker-Planck-type equations 

G Cicognat and D Vitali-i: 
t Dipartimento di Fisica, Universiti di Pisa, Piazza Torricelli 2, 56100-Pisa, Italy 
$ Scuola Normale Superiore, 56100-Pisa, Italy 

Received 7 February 1989 

Abstract. We study extended symmetry properties of time-evolution partial differential 
equations, including Fokker-Planck-type equations. We show that, even if-in general-no 
non-trivial symmetry is present, in some particular interesting cases some special symmetry 
is allowed, and we provide the general method for finding it. 

Considerable interest has recently been devoted to the determination of the ‘generalised 
symmetries’ of a differential equation. Referring to [ l ]  for a full exposition of this 
topic, let us recall briefly here that, if, for example, a time-evolution partial differential 
equation has a solutionf=f(x, t), x E R, t E R, a generalised symmetry is any continuous 
transformation (possibly non-linear or only local) x + x’, t + t’,f+f such thatf(x’, t’) 
is also a solution of the given equation. These transformations are assumed to depend 
analytically on a real parameter E ,  so that attention is mainly centred on their Lie 
generators, which in this case can be written in the general form 

where f,  7, 4 are the functions to be determined. 
The generalised symmetries of the heat equation, of the wave equation, of the 

Korteweg-de Vries equation, among others, are listed in [l]; an important case 
concerning the Schrodinger equation is examined in [2]. Some mathematical aspects 
of this problem are discussed in [ l ,  31. In this letter, we investigate the symmetry 
properties of one-dimensional equations of Fokker-Planck type [4,5], namely 
equations of the form 

_-  af  a 1 a2 
ar - -- ax ( 4 x l f  I + ?  3 (g’(x)f) 

or also in the more general form 

- = A ( x ) f + B ( x ) - - + C ( x ) ~  a f  a f  a2f 
a t  ax dX 

(3) 

where a, g, or respectively A, B, C are given regular (analytical) functions of x E R, with 

C(x) =4g2(x) z 0. (3’) 
Following step by step the Olver procedure in [ 13, we construct the second prolonga- 

tion of the vector field (1) and apply it to equations (2) or (3) in order to find the 
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conditions on the functions 5, 7, 4 in such a way that (1) generates a symmetry of 
equations (2) and (3). The conditions we obtain are the following (we refer to equation 
(3), the subscripts meaning differentiations): 

TX = 7f = 0 5, = 0 4n=O (4) 

implying 7 = T (  t ) ,  5 = [(x, t )  only, and 

4 = 4 x 9  t)+B(x, t l f  
(this is identical to the case of the heat equation [l]), and 

( 5 )  

This equation can be solved with respect to x, to get 

t = c ( t ) g + $ T , g G  (7)  

where c = c( i) is a function of t and G = G(x) is an integral function of l/g(x). The 
two other conditions we find are 

Now using ( 5 ) ,  we see that (9) requires that a = a ( x ,  t )  be a solution of (3); then 
we can rewrite the two above conditions (8) and (9) in the form 

2CPx= B 5 , - B X 5 - 5 , - B 7 , + C S ,  (10) 

PI = Ax.$+ BP, + CB, +AT,. (11) 

Finally, using (7), these can be written 

where 

1 p 2 =  -- 
g 

and 

In order to find P from (12) and (13), we have now to impose the condition prX = p x , ,  
which becomes, observing that p1 = q2x and p 3  = q4x, and using also (12’) 

ctt + gq1xC = -(fG~rrr + gq3X~r). (14) 
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All quantities in (14) depending on x are determined by the initial equation (3); 
so, imposing the identity (14) amounts to giving some restrictions on the functions 
c ( t ) ,  ~ ( t ) .  Once one has found the most general c, T consistent with (14), one can 
evaluate P(x ,  t )  through (12) and (13), and then obtain, via equations (l), (5) and (7), 
the complete symmetry of any equation of the type ( 2 )  and (3), as the foregoing 
examples will illustrate. 

First of all, it is clear that, whatever the functions a, g, A, B, C (and therefore pi, 
qi in (13)) are, the above system of equations possesses the solution 

T =  C1 P = c2 c#J = a + c2 f c = o  ( = O  (15) 
(where c1, c2 are constants and a a solution of (2) and (3)), which corresponds to the 
symmetries generated by 

a a a 
U] =- u,=f- u 3 = a - .  

at af a f  
Clearly, these are 'trivial' symmetries: in fact, u1 expresses the time-translation invari- 
ance (equations ( 2 )  and (3) are indeed autonomous equations); u2 ,  U, are a con- 
sequence, as is well known [l], of the linearity of ( 2 )  and (3) (iff and a are solutions 
of ( 2 )  and (3), the same is true for k f+a ) .  

Inspecting now more closely condition (14), one easily sees that 'generically', i.e. 
if there is no special relationship between the functions G, gq,,, gq,, appearing in 
(14), the only solution allowed by (14) is just c = 0, = 0, which leads precisely to the 
'trivial' situation (16) shared by all autonomous linear equations, as stated above. 
More precisely, it is not difficult to conclude that if the functions G, gq,,, gq,,, 1 are 
linearly independent, the only allowed symmetry is just the trivial one. For instance, 
this is the case if one chooses 

a = l  g = x  (17) 
in equation (2) .  

Some non-trivial symmetries can arise if some relationship occurs between the 
functions of x in (14), as shown by the foregoing examples. Assume, for example, in 
( 2 )  

a = x  g = l  (18) 
which corresponds of course to an important case in the Fokker-Planck theory [4,5], 
then condition (14) becomes 

C,, - C = - $ X (  TI0 - 47,) 

which implies 

Cll = c, TI,, = 47,. 
Once c, T, P are evaluated, one gets that, with this choice, the new symmetries 

generated by 
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are present. Now, U, expresses the property that if f(x, t )  solves the equation, then 
also f (x  + E e', t), E E R, does; u5 states also that 

exp(2sx e-'+ e2 e-*')f(x+ E e-', t) 

is a solution, whereas the remaining two operators generate more complicated sym- 
metries involving simultaneously x, t, J: 

Another interesting case for the Fokker-Planck equation is 

a = x  g = x  

for which (14) gives 

c,, = T',, = 0 

leading to the symmetries generated by 

a 
ax 

u,=x- 

Note that here u4 expresses the rather elementary property of scale invariance x -* e E x  
of the equation in this case. 

It can be remarked finally that with the choice 

( I=x  g = x + l  (20) 
only trivial symmetries (16) survive. We do not consider here the symmetries of the 
case a = 0, g = 1, i.e. the heat equation, which are obviously included (with c,, = 7,'' = 0) 
in the above general scheme, being fully discussed in [ 11. 
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